

Fires On Zero Emission Buses (ZEB's)

Contents

- Do Fires Occur on Zero Emission Buses?
- Are they more or less frequent than for Diesel Vehicles?
- What are the similarities and differences in Fire Threats
- Risks on Zero Emission Vehicles
- Risk Mitigation
- Review of ongoing Research and Solutions

News Articles Following Fires on ZEB's

2021, Stuttgart, Germany - 25 Mercedes eCitaro electric buses, charging hub & depot destroyed when a 'technical fault triggered when bus was charging'. Image: Feuerwehr Stuttgart

Cause: Fire during Charging

Significant Event
25 Vehicles involved
Loss of facility

2023, July: Hydrogen Fuel Cell Bus: Bakersfield CA, USA

Cause: Fire during Refuelling

10 hydrogen vehicles taken out of service pending investigation

2022, Paris, France - Driver saw a 'wheel explode' & evacuated passengers before the ebus became fully involved. Full footage on Twitter, credit JP News Photographer.

Cause: Energy storage system (ESS)
Events on 2 vehicles in a short
time frame

300 Vehicles out of service Until May 2024 – 2 years

Additional thermal protection On battery packs

2024, London, UK – All Electric Double Dekker Bus caught fire at bus stop $3^{\rm rd}$ event to occur in 2 months.

Cause: HVAC system

1 hybrid, 2 All Electric Batteries (ESS) not cause

Transport For London
Inspecting 1800
All Electric vehicles

Investigation of Fires on Buses (June 2023-24)

Deaths

135

Injuries

36

Fires on Buses – Australia

From: Bus Safety Report in NSW 2023: Office of Transport Safety Investigations (OTSI)

NSW – Electrification

2023 – 71 buses

2028 - 1200 buses

2040 – All Metropolitan

2047 - All Regional

Fire suppression and extinguishing equipment and safety monitoring systems were critical in mitigating damage

Analysis of Fire on Buses 2023-24

174 Vehicles (2 CNG)

Type of Vehicle

- Transit Bus 63%
- School Bus 21%
- Coach 16%
- DD / ART. Bus 13% Electrical 2%
- Cutaway / Midi 2% •

Cause Of Fire

- Engine 63%
- Tyre 6%
- Arson 6%
- Collision 4%
- Not recorded -19%

Bus Location

- In Service 96%
- Maintenance 2%
- Depot 2%

Emergency Measures

2000 L

2 Fire crews: 30 mins – 1.5 hr

13 Vehicles

(1 FCEV)

Type of Vehicle

- Transit Bus 85%
- DD / ART. Bus 15%

Cause Of Fire

- **Electrical Fault** (not Batt) – 42%
- Batteries 33%
- Collision 25%

Bus Location

- In Service 62%
- Maintenance 8%
- **Depot 31%**

Emergency Measures

3-7 Fire crews: 4 hr 12 hr (Re-Strikes)

Case Study – Event Timeline

Fire on Battery Electric Transit Bus, Hamden, Connecticut, USA

- Vehicle failed to power up after charging
 - Low coolant and temperature indicator on Energy Storage System (ESS)
- Vehicle taken out of Service for Maintenance

• July 22nd 2022

- 3:39am Reports of smoke inside depot
- 3:49 4:35am Fire Brigade Attended
 - Heat detected in rear Li-Ion battery
 - Vehicle pulled outside to parking lot
- 7:32 am 8:30pm Fire Brigade Attended 2nd Time
 - Vehicle fire fully involved
 - No further danger to personnel or structure vehicle left to burn
 - Hamden Fire Crew (HFC) attempted to cool rear batteries for several hours – HFC cleared at 3:30 pm
 - Small team remained until 8:30 pm to monitor vehicle

• July 25th 2022

- 3:31 am 3:57 am Fire Brigade attended
 - Smoke from ESS enclosure

2021: 7 New Flyer Xcelsior 40-foot BETBs - ~\$1M ea

July 2022: Vehicle Fully involved

Aftermath

Case Study - Summary of Findings

Probable Cause

Coolant from the Thermal Management System in one of the rear batteries (ESS) caused a short and thermal runaway

Infrastructure –

- 10 new charging stations fitted inside. 5 in use due to grid constraints
- Depot fire suppression systems upgraded to handle larger volumes of water

Safety Risk Management

- Emergency response guide found in vehicle behind drivers seat.
- Federal Transit Authority (FTA) does not require onboard fire suppression
- Vehicle was fitted with detection and suppression outside ESS

Maintenance Personnel

- Good records kept of all vehicle charging bus No, charger, SOC etc..
- 30 min class on emergency procedures for BEB's
- Vehicle under warranty New Flyer field service personnel perform repairs on electric systems

First Responder Training

- 3 training sessions held at Hamden during Jan Feb 2022 including train the trainer
- HFC on-sight had all received this training

Future Procurements

Aim- 100% ZEB's by 2035 ~ 600 buses 50 additional New Flyer – End 2024 142 more buses for completive bid

Facility Upgrades

150KW plug in charger 10 x 180KW Pantograph chargers 1 x 450KW fast charger Upgrade suppression

Probable Cause: Coolant leak in rear ESS

Emergency Response Guide (ERG)

Summary From Bus Fire Data

KlineFire

- Do Fires Occur on ZEB's? Yes
- Are they more or less frequent than for ICEB's? Same
- A few observations from Investigation
 - Create significant media interest vehicle recalls etc..
 - Some fires in ZEB's similar to ICEB's Collisions, External threats
 - Some fires challenges in ZEV's are different
 - Fires Occurring more often in depots Vehicles not "off" when charging
 - Vehicles often new to properties Battery systems can require offsite experts
 - Could early warnings have saved the Connecticut BETB?
 - Several good practices already in place
 - Emergency training for Transit teams and Fire Crew
 - Removed bus from depot. "Designated location" (SEPTA, Philadelphia Nov 2022)
 - Emergency Response Guide available and easy to access
 - Suppression system fitted even though not required

Hybrid Bus – London, UK

All Electric Bus - Wichita, USA

Bus Fire Research

Diesel and Gas Engines

- Diesel
 - 1 Zone
 - Early Detection Thermal. Optical
 - Stop flow of Fuel
 - Suppress re-strike protection
- Gas CNG, LNG
 - 2 Zones
 - Early Detection Gas
 - Turn off Gas valve
 - Detection & Suppression (As Diesel)

Minimum Performance Standards

- City Spec's USA From early 2000's
- P-Mark Global 2017
- AS5062 Australia 2016 Sydney bus fire
- UNECE R107 Europe Legal 2019-2021

UNECE 107 – Fire Test

Zero Emission Vehicles

KlineFire

- All Electric
 - Threats in Multiple Zones
 - Lithium Ion Batteries New Challenge
 - Many hazards similar to traditional vehicles

Other Threat - External	Fuels	
AC/DC Invertors	Hydrogen	
• Electric Drive Motors	Hydraulics	
 Compressors 	• Lubricants	
Auxiliary Heater	 Coolants 	
Steering units	• Fuels	
High Voltage Cabling/Connections	 Plastics 	
Wheel bearings & Brake issues	• Tyres	

Hydrogen Fuel Cell

- Threats in Multiple Zones
- Early Detection Gas
- Turn off Gas valve
- Detection & Suppression (As Diesel)

Information on Batteries

Lithium Ion Batteries - Variables

Abbreviation	Chemical Name	Chemical Forumula	Application
LCO	Lithium Cobalt Oxide	LiCoO ₂ (60% Co)	High capacity for cell phones, cameras etc
LMO	Lithium Manganese Oxide	LiMn ₂ O ₄	e.g. Ford Focus (LMO,NMC blend)
LFP	Lithium Iron Phosphate	LiFePO ₄	e.g. BYD (2010), Volvo 7900, Solaris 2024
NMC	Lithium Nickel Manganese Cobalt Oxide	LiNiMnCoO ₂ (10% Co)	e.g. VW-E-Golf (2015), Honda Fit EV, Renault Zoe (2014), Daimler
NCA	Lithium Nickel Cobalt Aluminium Oxide	LiNiCoAIO₂ (9% Co)	e.g. Tesla (2012 - 2018)
LTO	Lithium Titanate	Li ₄ Ti ₅ O ₁₂	e.g. Solaris Urbino, VDL Citea

Specific Energy: Battery capacity per unit of Weight (WH/kg)

Energy Density: Battery capacity per unit of volume (WH/m³)

Specific Power: Rate of discharge per unit of weight (W/kg)

Power Density: Rate of Discharge per unit of volume (W/m³)

Safety: Protection from abuse to minimise aging and extend life

Lifetime: Calendar life plus number & rate of charge cycles

Performance: The overall capability of a battery to supply energy effectively

and reliably over a specific period.

Cost: Upfront, ongoing and end of life

Battery Management System

Thermal Management System

Information on EV Batteries

- Emerging Technology Production Increasing
- Complex Many Variables
- Evolving / Changing
- Experts in Different Sectors

EV Vehicles - Battery Failure Mechanisms

Research into Battery Thermal Runaway

7 Cell - NMC - 7.5 Ah

7 Cell Cluster

NMC Cell – 4Ah (Heated)

Battery Pack and Sensors

<u>Acid Gases</u> HF, HCL 60 – 80% more than ICEV's

Research into State of Charge

Single Cell - NMC - 4 Ah

Single Pouch - NMC - 7.5 Ah

State of Charge reduces energy (e.g. Peak) during thermal runaway + Chemistry

Research into Prevention / Suppression

Gaseous

Aqueous

Heat off at Vent

Detection

Early detection promotes prevention – minimises damage.

Risk Reduction / Suppression

Stage 1: Prevention Detection: Pre-TR

- 1. Turn off Vehicle
- 2. Move Vehicle to "Safe" Location
 - Bunded
 - Toxic gases
- 3. Reduce SOC
- 4. Report Emergency Maintenance
 - Remove battery
 - Store in "safe" location for repair

Stage 2: Early on-set Detection: Early TR

- 1. Evacuate Turn off Vehicle
- 2. Driver / On-site personnel
 - Be mindful of Toxic gases
 - Call Emergency Services
- 3. Move personnel to "Safe" Location
- 4. Emergency Service to monitor vehicle
- 5. Move vehicle to "Safe" location
- 6. Reduce SOC
- 7. Report Emergency Maintenance
 - Remove battery
 - Store in "safe" location for repair

Stage 3: Vehicle full involved Detection: TR in progress

- Evacuate Turn off Vehicle
- 2. Driver / On-site personnel
 - Be mindful of Toxic gases
 - Call Emergency Services
- 3. Move personnel to "Safe" Location
- 4. On board Suppression activates if fitted
- 5. Emergency Services Suppression
- 6. Move to "Safe" Location when suppressed
- 7. When fully extinguished assess for repair

Weeks / Days

Hours / Minutes

Minutes / Seconds

Suppression – Fire Departments

Fire Blankets - Control / Suppress

Water Solutions - Suppress / Extinguish

Summary from Battery Fire Research

- Diesel and Gas vehicles
 - Detection / Suppression well understood
 - Minimum performance standards in place
- ZEB's
 - Hydrogen Fuel cell vehicles Hydrogen leak detection similar to natural gas vehicles (differences: Gas Detector & Locations)
 - High Energy Batteries to be assessed as with All Electric
 - All Electric Vehicles
 - Assess fire challenges on vehicle use detection / suppression on multiple high risk zones
 - High Energy Batteries
 - Many variables in battery types / locations / changes in Tech.
 - Who is Expert? Training to educate local service teams
 - Emergency information where it is needed
 - Early Detection Research & New products to drive detection from Stage 3/2 (current) to Stage 1
 - Emergency procedures Local service teams / fire departments to work together
 - Suppression Research & New products to improve on-board and fire department methods

References

- 1. Roeland Bisschop et al, "Fire Safety of Lithium-Ion Batteries in Road Vehicles", RISE report 2019
- Center for Urban Transportation Research (CUTR) University of South Florida, "Procuring and Maintaining Battery Electric Buses and Charging Systems – Best Practices", FTA Report 0253, August 2023.
- Driver and Vehicle Standards Agency "Investigation into bus fires reported to DVSA from 3030 to 2022", Gov.UK, 20th July 2023.
- 4. US National Transportation Safety Board, "Fire on Battery Electric Transit Bus, Hamden, Connecticut", HIR-24/03, 4th March 2024.
- 5. Klaus Stolzenburg et al., "JIVE Best Practice and Commercialization Report 2: Best Practice Information Bank Report 1", 31st January 2020.
- 6. Peter J. Bugryniec et al, "Review of gas emissions from lithium-ion battery thermal runaway failure Considering toxic and flammable compounds", UK Journal of Energy Storage 87, 2024.
- Daniel Juarez-Robles et al. "Degradation-Safety Analytics in Lithium-Ion Cells and Modules: Part III. Aging and Safety of Pouch Format Cells", US Journal of The Electrochemical Society, 2021 168 110501.
- 8. Ting Cai et al., "Detection of Li-ion battery failure and venting with Carbon Dioxide sensors", US eTransportation 7, 2021 100100.
- 9. Office of Transport Safety Investigations, "Bus Fires in New South Wales in 2023", Bus Safety Report ref. 04594(9), 2023.

Thank You